Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38543161

RESUMO

In this paper, we present the identification of polymorphisms at an early stage, identified by applying non-standard methods such as SAXS. We provide an analytical approach to polymorphism in the quality/purity of an active pharmaceutical ingredient (API), supplied to a generic company by two different suppliers (i.e., manufacturers). Changes in thermodynamic polymorphism firstly become visible in traces in the larger crystal lattices, which are visible on the SAXS spectrum only using the logarithmic scale, as shown in the result figures. Hence, we are here on the trail of the beginning of a new polymorph in nicomorphine, whose crystal waviness at the early stage is visible only in the additional symmetrical peaks identified and calculated using SAXS, while the chemical analyses excluded all kinds of chemical impurities. The chemical and structural properties were studied using the following techniques: SAXS, WAXS, DSC, dissolution, Raman spectroscopy, and FTIR. Only the SAXS technique could identify crucial differences and calculate the additional signals related to giant crystals, whilst a standard method such as WAXS showed none, and nor did the chemical analyses, such as Raman spectroscopy and FT-IR. This means that due to water in crystallization (known in nicomorphine) or thermodynamic waviness, the formation of the new polymorph starts first in traces, which become visible at larger distances from the crystal lattice, detectible only in the SAXS range. This is a very important premise and hypothesis for further research, and we believe that this work lays a new stone in understanding the origin of new unknown polymorphs and their mixtures. Therefore, the aim of this work is to show that the use of non-standard methods (i.e., SAXS) can be of great benefit to API analysis and the identification of polymorphic changes in the early phase, which can cause varied stability, solubility and bioavailability and thus different therapeutic effects or side effects.

2.
Int J Mol Sci ; 24(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38139385

RESUMO

The culture confirmation of Mycobacterium tuberculosis (MTB) remains the gold standard for the diagnosis of Tuberculosis (TB) with culture conversion representing proof of cure. However, over 40% of TB samples fail to isolate MTB even though many patients remain infectious due to the presence of viable non-culturable forms. Previously, we have shown that two short cationic peptides, T14D and TB08L, induce a hormetic response at low concentrations, leading to a stimulation of growth in MTB and the related animal pathogen Mycobacterium bovis (bTB). Here, we examine these peptides showing they can influence the mycobacterial membrane integrity and function through membrane potential reduction. We also show this disruption is associated with an abnormal reduction in transcriptomic signalling from specific mycobacterial membrane sensors that normally monitor the immediate cellular environment and maintain the non-growing phenotype. We observe that exposing MTB or bTB to these peptides at optimal concentrations rapidly represses signalling mechanisms maintaining dormancy phenotypes, which leads to the promotion of aerobic metabolism and conversion into a replicative phenotype. We further show a practical application of these peptides as reagents able to enhance conventional routine culture methods by stimulating mycobacterial growth. We evaluated the ability of a peptide-supplemented sample preparation and culture protocol to isolate the MTB against a gold standard routine method tested in parallel on 255 samples from 155 patients with suspected TB. The peptide enhancement increased the sample positivity rate by 46% and decreased the average time to sample positivity of respiratory/faecal sampling by seven days. The most significant improvements in isolation rates were from sputum smear-negative low-load samples and faeces. The peptide enhancement increased sampling test sensitivity by 19%, recovery in samples from patients with a previously culture-confirmed TB by 20%, and those empirically treated for TB by 21%. We conclude that sample decontamination and culture enhancement with D-enantiomer peptides offer good potential for the much-needed improvement of the culture confirmation of TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Tuberculose/diagnóstico , Técnicas de Cultura , Escarro/microbiologia , Sensibilidade e Especificidade
3.
Antibiotics (Basel) ; 12(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37627720

RESUMO

Membrane-active molecules provide a promising strategy to target and kill pathogenic bacteria. Understanding how specific molecular features drive interactions with membrane components and subsequently cause disruption that leads to antimicrobial activity is a crucial step in designing next-generation treatments. Here, we test a library of lipid-like compounds (lipidoids) against Gram-negative bacteria Escherichia coli to garner in-depth structure-activity relationships using antimicrobial assays. Modular lipidoid molecules were synthesized in high-throughput, such that we could analyze 104 compounds with variable combinations of hydrophobic tails and cationic headgroups. Antibacterial activity was strongly correlated to specific structural features, including tail hydrophobicity and headgroup charge density, and also to the overall molecular shape and propensity for self-assembly into curved liquid crystalline phases. Dye permeabilization assays showed that E. coli membranes were permeabilized by lipidoids, confirming their membrane-active nature. The reduced permeabilization, as compared to Gram-positive Bacillus subtilis, alludes to the challenge of permeabilizing the additional outer membrane layer of E. coli. The effect of headgroup solubility in gemini-type lipidoids was also demonstrated, revealing that a headgroup with a more hydrophilic spacer between amine groups had enhanced activity against B. subtilis but not E. coli. This provides insight into features enabling outer membrane penetration and governing selectivity between bacterial species.

4.
ACS Appl Mater Interfaces ; 15(34): 40178-40190, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37602460

RESUMO

The search for next-generation antibacterial compounds that overcome the development of resistance can be facilitated by identifying how to target the cell membrane of bacteria. Understanding the key molecular features that enable interactions with lipids and lead to membrane disruption is therefore crucial. Here, we employ a library of lipid-like compounds (lipidoids) comprising modular structures with tunable hydrophobic and hydrophilic architecture to shed light on how the chemical functionality and molecular shape of synthetic amphiphilic compounds determine their activity against bacterial membranes. Synthesized from combinations of 8 different polyamines as headgroups and 13 acrylates as tails, 104 different lipidoids are tested for activity against a model Gram-positive bacterial strain (Bacillus subtilis). Results from the combinatorial screening assay show that lipidoids with the most potent antimicrobial properties (down to 2 µM) have intermediate tail hydrophobicity (i.e., c log P values between 3 and 4) and lower headgroup charge density (i.e., longer spacers between charged amines). However, the most important factor appeared to be the ability of a lipidoid to self-assemble into an inverse hexagonal liquid crystalline phase, as observed by small-angle X-ray scattering (SAXS) analysis. The lipidoids active at lowest concentrations, which induced the most significant membrane damage during propidium iodide (PI) permeabilization assays, were those that aggregated into highly curved inverse hexagonal liquid crystal phases. These observations suggest that the introduction of strong curvature stress into the membrane is one way to maximize membrane disruption and lipidoid antimicrobial activity. Lipidoids that demonstrated the ability to furnish this phase consisted of either (i) branched or linear headgroups with shorter linear tails or (ii) cyclic headgroups with 4 bulky nonlinear tails. On the contrary, lipidoids previously observed to adopt disc-like conformations that pack into bicontinuous cubic phases were significantly less effective against B. subtilis. The discovery of these structure-property relationships demonstrates that it is not simply a balance of hydrophobic and hydrophilic moieties that govern membrane-active antibacterial activity, but also their intrinsic curvature and collective behavior.


Assuntos
Antibacterianos , Espalhamento a Baixo Ângulo , Difração de Raios X , Membranas , Membrana Celular , Antibacterianos/farmacologia , Cátions
5.
Antibiotics (Basel) ; 12(7)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37508259

RESUMO

OP-145 and SAAP-148, two 24-mer antimicrobial peptides derived from human cathelicidin LL-37, exhibit killing efficacy against both Gram-positive and Gram-negative bacteria at comparable peptide concentrations. However, when it comes to the killing activity against Escherichia coli, the extent of membrane permeabilization does not align with the observed bactericidal activity. This is the case in living bacteria as well as in model membranes mimicking the E. coli cytoplasmic membrane (CM). In order to understand the killing activity of both peptides on a molecular basis, here we studied their mode of action, employing a combination of microbiological and biophysical techniques including differential scanning calorimetry (DSC), zeta potential measurements, and spectroscopic analyses. Various membrane dyes were utilized to monitor the impact of the peptides on bacterial and model membranes. Our findings unveiled distinct binding patterns of the peptides to the bacterial surface and differential permeabilization of the E. coli CM, depending on the smooth or rough/deep-rough lipopolysaccharide (LPS) phenotypes of E. coli strains. Interestingly, the antimicrobial activity and membrane depolarization were not significantly different in the different LPS phenotypes investigated, suggesting a general mechanism that is independent of LPS. Although the peptides exhibited limited permeabilization of E. coli membranes, DSC studies conducted on a mixture of synthetic phosphatidylglycerol/phosphatidylethanolamine/cardiolipin, which mimics the CM of Gram-negative bacteria, clearly demonstrated disruption of lipid chain packing. From these experiments, we conclude that depolarization of the CM and alterations in lipid packing plays a crucial role in the peptides' bactericidal activity.

6.
Cell Stress ; 7(6): 46-49, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37265742

RESUMO

The continuous use of antibiotics is associated with the spread of antimicrobial resistances and the not yet clear link to cancer development. Many conventional antibiotics have already shown different effects on a variety of cancer types raising questions for their rational use in cancer. However, discrepancy in the observed trend for some antibiotics reducing cancer development and being associated with higher risk of cancer underscores the lack of understanding the complex link between antibiotics and cancer. Here, we briefly summarize the possible antibiotic-mediated effects on cancer and conclude that those effects can be direct via i) specific targeting of tumor/cancer, ii) antimicrobial activity and iii) immunomodulatory activity whereby iv) indirectly caused effects primarily affect immune equilibrium between bacteria, cancer and immune cells. Furthermore, we also conclude that there is a great need for bulk profiling, comprehensive screening programs in all countries and in-depth studies to understand the risks and benefits of antibiotic use.

7.
Antibiotics (Basel) ; 11(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36421309

RESUMO

With its broad antimicrobial spectrum and non-specific mode of action via membrane disruption, any resistance to octenidine (OCT) seems unlikely and has not been observed in clinical settings so far. In this study, we aimed to investigate the efficacy of OCT against Escherichia coli and mutants lacking specific lipid head groups which, due to altered membrane properties, might be the root cause for resistance development of membrane-active compounds. Furthermore, we aimed to test its efficacy under different experimental conditions including different solvents for OCT, bacterial concentration and methods for analysis. Our primary goal was to estimate how many OCT molecules are needed to kill one bacterium. We performed susceptibility assays by observing bacterial growth behavior, using a Bioscreen in an analogous manner for every condition. The growth curves were recorded for 20 h at 420-580 nm in presence of different OCT concentrations and were used to assess the inhibitory concentrations (IC100%) for OCT. Bacterial concentrations given in cell numbers were determined, followed by Bioscreen measurement by manual colony counting on agar plates and QUANTOMTM cell staining. This indicated a significant variance between both methods, which influenced IC100% of OCT, especially when used at low doses. The binding capacity of OCT to E. coli was investigated by measuring UV-absorbance of OCT exposed to bacteria and a common thermodynamic framework based on Bioscreen measurements. Results showed that OCT's antimicrobial activity in E. coli is not affected by changes at the membrane level but strongly dependent on experimental settings in respect to solvents and applied bacterial counts. More OCT was required when the active was dissolved in phosphate or Hepes buffers instead of water and when higher bacterial concentration was used. Furthermore, binding studies revealed that 107-108 OCT molecules bind to bacteria, which is necessary for the saturation of the bacterial surface to initiate the killing cascade. Our results clearly demonstrate that in vitro data, depending on the applied materials and the methods for determination of IC100%, can easily be misinterpreted as reduced bacterial susceptibility towards OCT.

8.
Biomolecules ; 12(9)2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36139091

RESUMO

The need for alternative treatment of multi-drug-resistant bacteria led to the increased design of antimicrobial peptides (AMPs). AMPs exhibit a broad antimicrobial spectrum without a distinct preference for a specific species. Thus, their mechanism, disruption of fundamental barrier function by permeabilization of the bacterial cytoplasmic membrane is considered to be rather general and less likely related to antimicrobial resistance. Of all physico-chemical properties of AMPs, their positive charge seems to be crucial for their interaction with negatively charged bacterial membranes. Therefore, we elucidate the role of electrostatic interaction on bacterial surface neutralization and on membrane disruption potential of two potent antimicrobial peptides, namely, OP-145 and SAAP-148. Experiments were performed on Escherichia coli, a Gram-negative bacterium, and Enterococcus hirae, a Gram-positive bacterium, as well as on their model membranes. Zeta potential measurements demonstrated that both peptides neutralized the surface charge of E. coli immediately after their exposure, but not of E. hirae. Second, peptides neutralized all model membranes, but failed to efficiently disrupt model membranes mimicking Gram-negative bacteria. This was further confirmed by flow cytometry showing reduced membrane permeability for SAAP-148 and the lack of OP-145 to permeabilize the E. coli membrane. As neutralization of E. coli surface charges was achieved before the cells were killed, we conclude that electrostatic forces are more important for actions on the surface of Gram-negative bacteria than on their cytoplasmic membranes.


Assuntos
Peptídeos Antimicrobianos , Escherichia coli , Antibacterianos/química , Antibacterianos/farmacologia , Membrana Celular , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Peptídeos/química , Eletricidade Estática
9.
mSphere ; 7(5): e0029022, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-35972132

RESUMO

Temporin B (TB) is a 13-amino-acid-long, cationic peptide secreted by the granular glands of the European frog Rana temporaria. We recently showed that the modified TB peptide analog TB_KKG6K rapidly killed planktonic and sessile Candida albicans at low micromolar concentrations and was neither hemolytic nor cytotoxic to mammalian cells in vitro. The present study aimed to shed light into its mechanism of action, with a focus on its fungal cell membrane activity. We utilized different fluorescent dyes to prove that it rapidly induces membrane depolarization and permeabilization. Studies on model membrane systems revealed that the TB analog undergoes hydrophobic and electrostatic membrane interactions, showing a preference for anionic lipids, and identified phosphatidylinositol and cardiolipin as possible peptide targets. Fluorescence microscopy using fluorescein isothiocyanate-labeled TB_KKG6K in the presence of the lipophilic dye FM4-64 indicated that the peptide compromises membrane integrity and rapidly enters C. albicans cells in an energy-independent manner. Peptide-treated cells analyzed by cryo-based electron microscopy exhibited no signs of cell lysis; however, subcellular structures had disintegrated, suggesting that intracellular activity may form part of the killing mechanism of the peptide. Taken together, this study proved that TB_KKG6K compromises C. albicans membrane function, which explains the previously observed rapid, fungicidal mode of action and supports its great potential as a future anti-Candida therapeutic. IMPORTANCE Fungal infections with the opportunistic human pathogen C. albicans are associated with high mortality rates in immunocompromised patients. This is partly due to the yeast's ability to rapidly develop resistance toward currently available antifungals. Small, cationic, membrane-active peptides are promising compounds to fight against resistance development, as many of them effectuate rapid fungal cell death. This fast killing is believed to hamper the development of resistance, as the fungi do not have sufficient time to adapt to the antifungal compound. We previously reported that the synthetic variant of the amphibian TB peptide, TB_KKG6K, rapidly kills C. albicans. In the current study, the mechanism of action of the TB analog was investigated. We show that this TB analog is membrane-active and impairs cell membrane function, highlighting its potential to be developed as an attractive alternative anti-C. albicans therapeutic that may hinder the development of resistance.


Assuntos
Antifúngicos , Candida albicans , Animais , Anfíbios , Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Candida albicans/efeitos dos fármacos , Cardiolipinas , Fluoresceínas , Corantes Fluorescentes , Isotiocianatos , Fosfatidilinositóis , Ranidae
10.
Appl Environ Microbiol ; 88(10): e0018022, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35481757

RESUMO

The antimicrobial killing mechanism of octenidine (OCT), a well-known antiseptic is poorly understood. We recently reported its interaction with Gram-negative bacteria by insertion of OCT into the outer and cytoplasmic membrane of Escherichia coli, resulting in a chaotic lipid rearrangement and rapid disruption of the cell envelope. Its action primarily disturbs the packing order of the hydrophobic moiety of a lipid, which consequently might result in a cascade of multiple effects at a cellular level. Here, we investigated OCT's impact on two different Gram-positive bacteria, Enterococcus hirae and Bacillus subtilis, and their respective model membranes. In accordance with our previous results, OCT induced membrane disorder in all investigated model systems. Electron and fluorescence microscopy clearly demonstrated changes in cellular structure and membrane integrity. These changes were accompanied by neutralization of the surface charge in both E. hirae and B. subtilis and membrane disturbances associated with permeabilization. Similar permeabilization and disordering of the lipid bilayer was also observed in model membranes. Furthermore, experiments performed on strongly versus partly anionic membranes showed that the lipid disordering effect induced by OCT is a result of maximized hydrophobic over electrostatic forces without distinct neutralization of the surface charge or discrimination between the lipid head groups. Indeed, mutants lacking specific lipid head groups were also susceptible to OCT to a similar extent as the wild type. The observed unspecific mode of action of OCT underlines its broad antimicrobial profile and renders the development of bacterial resistance to this molecule less likely. IMPORTANCE OCT is a well-established antiseptic molecule routinely used in a large field of clinical applications. Since the spread of antimicrobial resistance has restricted the use of antibiotics worldwide, topically applied antiseptics like OCT, with a broad spectrum of antimicrobial activity and high safety profile, gain increasing importance for effective infection prevention and therapy. To eliminate a wide spectrum of disease-causing microorganisms, a compound's antiseptic activity should be unspecific or multitarget. Our results demonstrate an unspecific mechanism of action for OCT, which remained largely unknown for years. OCT disturbs the barrier function of a bacterial cell, a function that is absolutely fundamental for survival. Because OCT does not distinguish between lipids, the building blocks of bacterial membranes, its mode of action might be attributed to all bacteria, including (multi)drug-resistant isolates. Our results underpin OCT's potent antiseptic activity for successful patient outcome.


Assuntos
Anti-Infecciosos Locais , Antibacterianos/metabolismo , Anti-Infecciosos Locais/farmacologia , Bacillus subtilis , Membrana Celular/metabolismo , Escherichia coli , Bactérias Gram-Positivas , Humanos , Iminas , Lipídeos/farmacologia , Testes de Sensibilidade Microbiana , Piridinas
11.
Biomolecules ; 12(4)2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35454112

RESUMO

The development of antimicrobial agents against multidrug-resistant bacteria is an important medical challenge. Antimicrobial peptides (AMPs), human cathelicidin LL-37 and its derivative OP-145, possess a potent antimicrobial activity and were under consideration for clinical trials. In order to overcome some of the challenges to their therapeutic potential, a very promising AMP, SAAP-148 was designed. Here, we studied the mode of action of highly cationic SAAP-148 in comparison with OP-145 on membranes of Enterococcus hirae at both cellular and molecular levels using model membranes composed of major constituents of enterococcal membranes, that is, anionic phosphatidylglycerol (PG) and cardiolipin (CL). In all assays used, SAAP-148 was consistently more efficient than OP-145, but both peptides displayed pronounced time and concentration dependences in killing bacteria and performing at the membrane. At cellular level, Nile Red-staining of enterococcal membranes showed abnormalities and cell shrinkage, which is also reflected in depolarization and permeabilization of E. hirae membranes. At the molecular level, both peptides abolished the thermotropic phase transition and induced disruption of PG/CL. Interestingly, the membrane was disrupted before the peptides neutralized the negative surface charge of PG/CL. Our results demonstrate that SAAP-148, which kills bacteria at a significantly lower concentration than OP-145, shows stronger effects on membranes at the cellular and molecular levels.


Assuntos
Peptídeos Antimicrobianos , Streptococcus faecium ATCC 9790 , Antibacterianos/química , Membrana Celular/metabolismo , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana , Fosfatidilgliceróis
12.
Front Med Technol ; 3: 625975, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047906

RESUMO

We coupled the antimicrobial activity of two well-studied lactoferricin derivatives, LF11-215 and LF11-324, in Escherichia coli and different lipid-only mimics of its cytoplasmic membrane using a common thermodynamic framework for peptide partitioning. In particular, we combined an improved analysis of microdilution assays with ζ-potential measurements, which allowed us to discriminate between the maximum number of surface-adsorbed peptides and peptides fully partitioned into the bacteria. At the same time, we measured the partitioning of the peptides into vesicles composed of phosphatidylethanolamine (PE), phosphatidylgylcerol (PG), and cardiolipin (CL) mixtures using tryptophan fluorescence and determined their membrane activity using a dye leakage assay and small-angle X-ray scattering. We found that the vast majority of LF11-215 and LF11-324 readily enter inner bacterial compartments, whereas only 1-5% remain surface bound. We observed comparable membrane binding of both peptides in membrane mimics containing PE and different molar ratios of PG and CL. The peptides' activity caused a concentration-dependent dye leakage in all studied membrane mimics; however, it also led to the formation of large aggregates, part of which contained collapsed multibilayers with sandwiched peptides in the interstitial space between membranes. This effect was least pronounced in pure PG vesicles, requiring also the highest peptide concentration to induce membrane permeabilization. In PE-containing systems, we additionally observed an effective shielding of the fluorescent dyes from leakage even at highest peptide concentrations, suggesting a coupling of the peptide activity to vesicle fusion, being mediated by the intrinsic lipid curvatures of PE and CL. Our results thus show that LF11-215 and LF11-324 effectively target inner bacterial components, while the stored elastic stress makes membranes more vulnerable to peptide translocation.

13.
Int J Antimicrob Agents ; 56(5): 106146, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32853670

RESUMO

Octenidine (OCT) is a widely used antiseptic molecule with an antimicrobial spectrum covering a broad range of bacteria and fungi. However, the detailed molecular mechanism of killing has not yet been elucidated. The objective of our study was to investigate the mode of action of OCT's potent effect on Gram-negative bacteria using Escherichia coli as a model organism as well as corresponding model membranes. The effects of OCT on cellular morphology were observed by electron microscopy, changes affecting membrane integrity (surface charge, fluidity, permeabilisation and depolarisation) by zeta potential, fluorescence microscopy and spectroscopy. Specific interactions of OCT with membrane phospholipids were addressed using differential scanning calorimetry, X-ray scattering and fluorescence techniques. OCT neutralises the surface charge of E. coli leading to disruption of the outer membrane and dramatic loss of the cell wall and further penetrates through the periplasmic space reaching the inner membrane. Model membranes showed that OCT inserts into the hydrophobic fatty acyl chain region of the bilayer, inducing complete lipid disorder. The loss of membrane integrity is also reflected by membrane depolarisation and changes in membrane fluidity as shown by electron microscopy. Insertion of OCT into the outer and inner membrane of E. coli results in a chaotic lipid arrangement that leads to rapid disruption of the cell envelope. We propose that this unspecific mode of action based on purely physical interactions is the basis of the very broad antimicrobial profile and makes it unlikely that resistance to OCT will develop.


Assuntos
Antibacterianos/farmacologia , Anti-Infecciosos Locais/farmacologia , Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Piridinas/farmacologia , Membrana Celular/fisiologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/fisiologia , Humanos , Iminas , Testes de Sensibilidade Microbiana , Fosfolipídeos/metabolismo , Eletricidade Estática
14.
Biochim Biophys Acta Biomembr ; 1862(8): 183282, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32376222

RESUMO

Antimicrobial peptides are considered promising candidates for the development of novel antimicrobial agents to combat infections by multi-drug-resistant (MDR) bacteria. Here, we describe the identification and characterization of the synthetic peptide TC19, derived from the human thrombocidin-1-derived peptide L3. Biophysical experiments into the interaction between TC19 and mimics of human and bacterial plasma membranes demonstrated that the peptide is highly selective for bacterial membranes. In agreement, TC19 combined low cytotoxicity towards human fibroblasts with efficient and rapid killing in human plasma of MDR strains of several bacterial species of the ESKAPE panel. In addition, TC19 induced minor resistance in vitro, neutralized pro-inflammatory activity of bacterial cell envelope components while displaying slight chemotactic activity for human neutrophils. Importantly, topical application of TC19-containing hypromellose gel significantly reduced numbers of viable methicillin-resistant Staphylococcus aureus (MRSA) and MDR Acinetobacter baumannii in a superficial wound infection in mice. Together, TC19 is an attractive candidate for further development as a novel agent against (MDR) bacterial skin wound infections.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Biofilmes/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Pele/efeitos dos fármacos , Pele/microbiologia , Pele/patologia , Infecção dos Ferimentos/genética , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/patologia
16.
Biochim Biophys Acta Biomembr ; 1862(8): 183275, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32173291

RESUMO

The search for novel compounds to combat multi-resistant bacterial infections includes exploring the potency of antimicrobial peptides and derivatives thereof. Complementary to high-throughput screening techniques, biophysical and biochemical studies of the biological activity of these compounds enable deep insight, which can be exploited in designing antimicrobial peptides with improved efficacy. This approach requires the combination of several techniques to study the effect of such peptides on both bacterial cells and simple mimics of their cell envelope, such as lipid-only vesicles. These efforts carry the challenge of bridging results across techniques and sample systems, including the proper choice of membrane mimics. This review describes some important concepts toward the development of potent antimicrobial peptides and how they translate to frequently applied experimental techniques, along with an outline of the biophysics pertaining to the killing mechanism of antimicrobial peptides.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Infecções Bacterianas/tratamento farmacológico , Membrana Celular/efeitos dos fármacos , Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/patogenicidade , Infecções Bacterianas/microbiologia , Membrana Celular/microbiologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Humanos
17.
Front Microbiol ; 10: 605, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031714

RESUMO

The membrane sphingolipid glucosylceramide (GlcCer) plays an important role in fungal fitness and adaptation to most diverse environments. Moreover, reported differences in the structure of GlcCer between fungi, plants and animals render this pathway a promising target for new generation therapeutics. Our knowledge about the GlcCer biosynthesis in fungi is mainly based on investigations of yeasts, whereas this pathway is less well characterized in molds. We therefore performed a detailed lipidomic profiling of GlcCer species present in Neurospora crassa and comprehensively show that the deletion of genes encoding enzymes involved in GlcCer biosynthesis affects growth, conidiation and stress response in this model fungus. Importantly, our study evidences that differences in the pathway intermediates and their functional role exist between N. crassa and other fungal species. We further investigated the role of GlcCer in the susceptibility of N. crassa toward two small cysteine-rich and cationic antimicrobial proteins (AMPs), PAF and PAFB, which originate from the filamentous ascomycete Penicillium chrysogenum. The interaction of these AMPs with the fungal plasma membrane is crucial for their antifungal toxicity. We found that GlcCer determines the susceptibility of N. crassa toward PAF, but not PAFB. A higher electrostatic affinity of PAFB than PAF to anionic membrane surfaces might explain the difference in their antifungal mode of action.

18.
J Biol Chem ; 293(15): 5544-5555, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29414770

RESUMO

S-Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S-adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition.


Assuntos
Adenosil-Homocisteinase/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , S-Adenosil-Homocisteína/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosil-Homocisteinase/genética , Ácidos Graxos/genética , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/metabolismo , Modelos Biológicos , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
19.
Sci Transl Med ; 10(423)2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321257

RESUMO

Development of novel antimicrobial agents is a top priority in the fight against multidrug-resistant (MDR) and persistent bacteria. We developed a panel of synthetic antimicrobial and antibiofilm peptides (SAAPs) with enhanced antimicrobial activities compared to the parent peptide, human antimicrobial peptide LL-37. Our lead peptide SAAP-148 was more efficient in killing bacteria under physiological conditions in vitro than many known preclinical- and clinical-phase antimicrobial peptides. SAAP-148 killed MDR pathogens without inducing resistance, prevented biofilm formation, and eliminated established biofilms and persister cells. A single 4-hour treatment with hypromellose ointment containing SAAP-148 completely eradicated acute and established, biofilm-associated infections with methicillin-resistant Staphylococcus aureus and MDR Acinetobacter baumannii from wounded ex vivo human skin and murine skin in vivo. Together, these data demonstrate that SAAP-148 is a promising drug candidate in the battle against antibiotic-resistant bacteria that pose a great threat to human health.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacos , Administração Tópica , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Colistina/farmacologia , Escherichia coli/efeitos dos fármacos , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Pomadas/farmacologia , Pele/efeitos dos fármacos , Pele/microbiologia
20.
Pharmaceuticals (Basel) ; 9(3)2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27657092

RESUMO

Antimicrobial peptides (AMPs) have remarkably different structures as well as biological activity profiles, whereupon most of these peptides are supposed to kill bacteria via membrane damage. In order to understand their molecular mechanism and target cell specificity for Gram-positive bacteria, it is essential to consider the architecture of their cell envelopes. Before AMPs can interact with the cytoplasmic membrane of Gram-positive bacteria, they have to traverse the cell wall composed of wall- and lipoteichoic acids and peptidoglycan. While interaction of AMPs with peptidoglycan might rather facilitate penetration, interaction with anionic teichoic acids may act as either a trap for AMPs or a ladder for a route to the cytoplasmic membrane. Interaction with the cytoplasmic membrane frequently leads to lipid segregation affecting membrane domain organization, which affects membrane permeability, inhibits cell division processes or leads to delocalization of essential peripheral membrane proteins. Further, precursors of cell wall components, especially the highly conserved lipid II, are directly targeted by AMPs. Thereby, the peptides do not inhibit peptidoglycan synthesis via binding to proteins like common antibiotics, but form a complex with the precursor molecule, which in addition can promote pore formation and membrane disruption. Thus, the multifaceted mode of actions will make AMPs superior to antibiotics that act only on one specific target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...